Newcastle disease virus (NDV) recombinants expressing infectious laryngotracheitis virus (ILTV) glycoproteins gB and gD protect chickens against ILTV and NDV challenges.

نویسندگان

  • Wei Zhao
  • Stephen Spatz
  • Zhenyu Zhang
  • Guoyuan Wen
  • Maricarmen Garcia
  • Laszlo Zsak
  • Qingzhong Yu
چکیده

UNLABELLED Infectious laryngotracheitis (ILT) is a highly contagious acute respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). The disease is controlled mainly through biosecurity and vaccination with live attenuated strains of ILTV and vectored vaccines based on turkey herpesvirus (HVT) and fowlpox virus (FPV). The current live attenuated vaccines (chicken embryo origin [CEO] and tissue culture origin [TCO]), although effective, can regain virulence, whereas HVT- and FPV-vectored ILTV vaccines are less efficacious than live attenuated vaccines. Therefore, there is a pressing need to develop safer and more efficacious ILTV vaccines. In the present study, we generated Newcastle disease virus (NDV) recombinants, based on the LaSota vaccine strain, expressing glycoproteins B (gB) and D (gD) of ILTV using reverse genetics technology. These recombinant viruses, rLS/ILTV-gB and rLS/ILTV-gD, were slightly attenuated in vivo yet retained growth dynamics, stability, and virus titers in vitro that were similar to those of the parental LaSota virus. Expression of ILTV gB and gD proteins in the recombinant virus-infected cells was detected by immunofluorescence assay. Vaccination of specific-pathogen-free chickens with these recombinant viruses conferred significant protection against virulent ILTV and velogenic NDV challenges. Immunization of commercial broilers with rLS/ILTV-gB provided a level of protection against clinical disease similar to that provided by the live attenuated commercial vaccines, with no decrease in body weight gains. The results of the study suggested that the rLS/ILTV-gB and -gD viruses are safe, stable, and effective bivalent vaccines that can be mass administered via aerosol or drinking water to large chicken populations. IMPORTANCE This paper describes the development and evaluation of novel bivalent vaccines against chicken infectious laryngotracheitis (ILT) and Newcastle disease (ND), two of the most economically important infectious diseases of poultry. The current commercial ILT vaccines are either not safe or less effective. Therefore, there is a pressing need to develop safer and more efficacious ILT vaccines. In the present study, we generated Newcastle disease virus (NDV) recombinants expressing glycoproteins B (gB) and D (gD) of infectious laryngotracheitis virus (ILTV) using reverse genetics technology. These recombinant viruses were safe, stable, and immunogenic and replicated efficiently in birds. Vaccination of chickens with these recombinant viruses conferred complete protection against ILTV and NDV challenge. These novel bivalent vaccines can be mass administered via aerosol or drinking water to large chicken populations at low cost, which will have a direct impact on poultry health, fitness, and performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular biology of avian infectious laryngotracheitis virus.

Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes an economically important chicken disease, which results in delayed growth, reduced egg production, and also frequently in death of the animals. After acute infection of the upper respiratory tract, the virus can establish latency in the central nervous system, and subsequent reactivations can lead to infection of naiv...

متن کامل

Glycoprotein-based enzyme-linked immunosorbent assays for serodiagnosis of infectious laryngotracheitis.

For detection of infectious laryngotracheitis virus (ILTV) antibody, glycoprotein B-, C-, and D-based enzyme-linked immunosorbent assays (B-, C-, and D-ELISAs, respectively) were developed. The B- and D-ELISAs showed enhanced detection of anti-ILTV antibodies in infected chickens compared to that of the commercial ELISA. Furthermore, the D-ELISA was efficient in detecting seroconversion with ve...

متن کامل

Deletion of the non-essential UL0 gene of infectious laryngotracheitis (ILT) virus leads to attenuation in chickens, and UL0 mutants expressing influenza virus haemagglutinin (H7) protect against ILT and fowl plague.

Infectious laryngotracheitis virus (ILTV), a member of the Alphaherpesvirinae, possesses several unique genes. One of them, UL0, encodes an abundantly expressed protein that accumulates in the nuclei of ILTV-infected cells. This study demonstrates that this protein is dispensable for in vitro virus replication and that UL0 deletion mutants exhibit only minor growth defects in cultured cells. Th...

متن کامل

Protection Induced in Broiler Chickens following Drinking-Water Delivery of Live Infectious Laryngotracheitis Vaccines against Subsequent Challenge with Recombinant Field Virus

Infectious laryngotracheitis virus (ILTV) causes acute upper respiratory tract disease in chickens. Attenuated live ILTV vaccines are often used to help control disease, but these vaccines have well documented limitations, including retention of residual virulence, incomplete protection, transmission of vaccine virus to unvaccinated birds and reversion to high levels of virulence following bird...

متن کامل

Development and application of a TaqMan single nucleotide polymorphism genotyping assay to study infectious laryngotracheitis virus recombination in the natural host

To date, recombination between different strains of the avian alphaherpesvirus infectious laryngotracheitis virus (ILTV) has only been detected in field samples using full genome sequencing and sequence analysis. These previous studies have revealed that natural recombination is widespread in ILTV and have demonstrated that recombination between two attenuated ILTV vaccine strains generated hig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 88 15  شماره 

صفحات  -

تاریخ انتشار 2014